The benefits of robotics in manufacturing in the era of industry 4.0: a systematic literature review
DOI:
https://doi.org/10.24023/FutureJournal/2175-5825/2025.v17i1.900Keywords:
Electronic Information System, Digitalization, Innovation, Public administration, Legislative BranchAbstract
Objetivo: O objetivo deste estudo é identificar os benefícios esperados da adoção de tecnologias de robótica na manufatura.
Originalidade/Valor: Este estudo preenche a lacuna teórica sobre os benefícios da robótica na manufatura, além da mera substituição de mão de obra, aprofundando a compreensão das vantagens da Indústria 4.0 e contribuindo para o desenvolvimento de futuras tecnologias e práticas industriais.
Métodos: Uma Revisão Sistemática da Literatura analisou trinta e cinco artigos das bases de dados Scopus e Web of Science, utilizando um protocolo estruturado, resultando em uma análise detalhada dos benefícios agrupados em categorias temáticas.
Resultados: A adoção da robótica na manufatura oferece benefícios como aumento da eficiência da produção, melhoria da qualidade, maior competitividade, melhorias ergonômicas e de segurança e redução de custos operacionais. Esses benefícios foram agrupados em cinco categorias principais.
Conclusões: O valor do artigo está em fornecer uma visão geral abrangente dos benefícios da robótica na manufatura, com implicações tanto para a teoria quanto para a prática, destacando a importância de políticas públicas que incentivem a adoção segura dessas tecnologias.
Downloads
References
Anzolin, G., & Andreoni, A. (2023). Robotising, but how? Evidence from the automotive sector in South Africa. Journal of Manufacturing Technology Management, (ahead-of-print), 34(5), 820-837. https://doi.org/10.1108/JMTM-06-2022-0242
Anzolin, G., Andreoni, A., & Zanfei, A. (2022). What is driving robotisation in the automotive value chain? Empirical evidence on the role of FDIs and domestic capabilities in technology adoption. Technovation, 115, 102476. https://doi.org/10.1016/j.technovation.2022.102476
Ashurst, C., Freer, A., Ekdahl, J., & Gibbons, C. (2012). Exploring IT-enabled innovation: A new paradigm?. International Journal of Information Management, 32(4), 326-336. https://doi.org/10.1016/j.ijinfomgt.2012.05.006
Aubry, M., Boukri, S. E., & Sergi, V. (2021). Opening the black box of benefits management in the context of projects. Project Management Journal, 52(5), 434-452. https://doi.org/10.1177/87569728211020606
AXELSON, J. V., MATTSSON, S., & LANGBECK, B. (2020) Planning for Nation Wide Dissemination of Robotics to SMEs. In SPS2020 (pp. 130-141). IOS Press. https://doi.org/10.3233/ATDE200150
Ballestar, M. T., Díaz-Chao, Á., Sainz, J., & Torrent-Sellens, J. (2021). Impact of robotics on manufacturing: A longitudinal machine learning perspective. Technological Forecasting and Social Change, 162, 120348. https://doi.org/10.1016/j.techfore.2020.120348
Bettiol, M., Capestro, M., Di Maria, E., & Ganau, R. (2024). Is this time different? How Industry 4.0 affects firms’ labor productivity. Small Business Economics, 62(4), 1449-1467. https://doi.org/10.1007/s11187- 023-00825-8
Bettiol, M., Capestro, M., Di Maria, E., & Micelli, S. (2021). SMEs@ Industry 4.0: a comparison between top and average performers. Sinergie Italian Journal of Management, 39(3), 27-48. https://doi.org/10.7433/S116.2021.03
Botha, A. P. (2019). A mind model for intelligent machine innovation using future thinking principles. Journal of Manufacturing Technology Management, 30(8), 1250-1264. https://doi.org/10.1108/JMTM-01-2018-0021
Čech, M., Wicher, P., Lenort, R., Malčic, T., David, J., Holman, D., ... & Záruba, J. (2020). Autonomous mobile robot technology for supplying assembly lines in the automotive industry. Acta logistica, 7(2), 103-109. https://doi.org/10.22306/al.v7i2.164
Clarke, S., & Doherty, N. (2004). The importance of a strong business‐IT relationship for the realisation of benefits in e‐business projects: the experiences of Egg. Qualitative Market Research: An International Journal, 7(1), 58-66. https://doi.org/10.1108/13522750410512886
Correa, R. D., Silva, L. F. D., & Scafuto, I. C. (2023). Mechanisms for capturing and transferring tacit knowledge between projects. International Journal of Knowledge Management Studies, 14(1), 50-73. https://doi.org/10.1504/IJKMS.2023.127305
De Vries, G. J., Gentile, E., Miroudot, S., & Wacker, K. M. (2020). The rise of robots and the fall of routine jobs. Labour Economics, 66, 101885. https://doi.org/10.1016/j.labeco.2020.101885
Doherty, N. F., Ashurst, C., & Peppard, J. (2012). Factors affecting the successful realisation of benefits from systems development projects: findings from three case studies. Journal of Information technology, 27(1), 1-16. https://doi.org/10.1057/jit.2011.8
Dupont, D. H., & Eskerod, P. (2016). Enhancing project benefit realization through integration of line managers as project benefit managers. International Journal of Project Management, 34(4), 779-788. https://doi.org/10.1016/j.ijproman.2015.10.009
El Souri, M., & Gao, J. (2022). Impact of Knowledge Exchange in Cross Regional Interdisciplinary Collaboration Within a Robotic Development Project. In Advances in Manufacturing Technology XXXV (pp. 107-112). IOS Press. https://doi.org/10.3233/ATDE220575
Enrique, D. V., Marcon, É., Charrua-Santos, F., & Frank, A. G. (2022). Industry 4.0 enabling manufacturing flexibility: technology contributions to individual resource and shop floor flexibility. Journal of Manufacturing Technology Management, 33(5), 853-875. https://doi.org/10.1108/JMTM-08-2021-0312
Fan, H., Hu, Y., & Tang, L. (2021). Labor costs and the adoption of robots in China. Journal of Economic Behavior & Organization, 186, 608-631. https://doi.org/10.1016/j.jebo.2020.11.024
Farina, J., & Fontana, J. (2021). Managing change towards Industry 4.0: How organizations design and implement Industry 4.0 projects. International Journal of Systematic Innovation, 6(4), 18-32. https://doi.org/10.6977.IJoSI.202106_6(4).0002
Fernandes, G., & O’Sullivan, D. (2021). Benefits management in university-industry collaboration programs. International Journal of Project Management, 39(1), 71-84. https://doi.org/10.1016/j.ijproman.2020.10.002
Forcina, A., & Falcone, D. (2021). The role of Industry 4.0 enabling technologies for safety management: A systematic literature review. Procedia Computer Science, 180, 436-445. https://doi.org/10.1016/j.procs.2021.01.260
Gihleb, R., Giuntella, O., Stella, L., & Wang, T. (2022). Industrial robots, workers’ safety, and health. Labour Economics, 78, 102205. https://doi.org/10.1016/j.labeco.2022.102205
Gomes, J., & Romão, M. (2018). Achieving dynamic capabilities through the benefits management approach. International Journal of Information Systems in the Service Sector (IJISSS), 10(2), 53-68. https://doi.org/10.4018/IJISSS.2018040104
Gonçalves, M. L. A., Penha, R., Silva, L. F., Martens, C. D., & Silva, V. F. (2023). The relationship between project management and digital transformation: Systematic literature review. RAM. Revista de Administração Mackenzie, 24, eRAMR230075. https://doi.org/10.1590/1678-6971/eRAMR230075.en
Hamidi, H. (2017). A model for impact of organizational project benefits management and its impact on end user. Journal of Organizational and End User Computing (JOEUC), 29(1), 51-65. https://doi.org/10.4018/JOEUC.2017010104
Hwang, W. S., & Kim, H. S. (2021). Does the adoption of emerging technologies improve technical efficiency? Evidence from Korean manufacturing SMEs. Small Business Economics, 59, 627–643. https://doi.org/10.1007/s11187-021-00554-w
Ietto, B., Ancillai, C., Sabatini, A., Carayannis, E. G., & Gregori, G. L. (2022). The role of external actors in SMEs’ human-centered industry 4.0 adoption: an empirical perspective on Italian competence centers. IEEE Transactions on Engineering Management. 71, 1057-1072. https://doi.org/10.1109/TEM.2022.3144881
Jia, W., Yang, T., & Zhang, X. (2023). The rise of robots and the fall of cost stickiness: Evidence from Chinese manufacturers. Accounting & Finance, 63(3), 3147-3171. https://doi.org/10.1111/acfi.13022
Kanski, L., & Pizon, J. (2023). The impact of selected components of industry 4.0 on project management. Journal of Innovation & Knowledge, 8(1), 100336. https://doi.org/10.1016/j.jik.2023.100336
Komal. (2020). Fuzzy fault tree analysis for controlling robot-related accidents involving humans in industrial plants: a case study. International Journal of Quality and Reliability Management, 38(6), 1342-1364. https://doi.org/10.1108/IJQRM-03-2020-0069
Kumar, P., Bhamu, J., & Sangwan, K. S. (2021). Analysis of barriers to Industry 4.0 adoption in manufacturing organizations: An ISM approach. Procedia Cirp, 98, 85-90. https://doi.org/10.1016/j.procir.2021.01.010
Lee, C. C., Qin, S., & Li, Y. (2022). Does industrial robot application promote green technology innovation in the manufacturing industry?. Technological Forecasting and Social Change, 183, 121893. https://doi.org/10.1016/j.techfore.2022.121893
Leenes, R., Palmerini, E., Koops, B. J., Bertolini, A., Salvini, P., & Lucivero, F. (2017). Regulatory challenges of robotics: some guidelines for addressing legal and ethical issues. Law, Innovation and Technology, 9(1), 1-44. https://doi.org/10.1080/17579961.2017.1304921
Li, D., Liang, Z., Tell, F., & Xue, L. (2021). Sectoral systems of innovation in the era of the fourth industrial revolution: an introduction to the special section. Industrial and Corporate Change, 30(1), 123-135. https://doi.org/10.1093/icc/dtaa064
Luo, H., & Qiao, H. (2023). Exploring the impact of industrial robots on firm innovation under circular economy umbrella: a human capital perspective. Management Decision. 62(9), 2763-2790. https://doi.org/10.1108/MD-02-2023-0285
Market Research Future. (2024, February). Smart Robot Market Research Report - Global Forecast Till 2023. Retrieved from https://www.marketresearchfuture.com/reports/smart-robot-market-6622 Acesso em 10 de março de 2024.
Marnewick, C., & Marnewick, A. L. (2019). The demands of industry 4.0 on project teams. IEEE Transactions on Engineering Management, 67(3), 941-949. https://doi.org/10.1109/TEM.2019.2899350
Martin, L., Gao, J., Le, C. H., Sarhan, A., Cherepeti, S., & Sarrazin, A. (2022). Modular, mobile and autonomous robotics for manufacturing SMEs. In Advances in Manufacturing Technology XXXV (pp. 101-106). IOS Press.
https://doi.org/10.3233/ATDE220574
Martin, L., Gao, J., Wilson, A., Le, C. H., & Ree, M. D. (2021). Autonomous mobile robots in high occupancy aerospace manufacturing. In Advances in Manufacturing Technology XXXIV (pp. 133-138). IOS Press.
https://doi.org/10.3233/ATDE210025
McKinsey & Company. (2020). Industry 4.0: Reimagining manufacturing operations after COVID-19. McKinsey & Company. https://www.mckinsey.com/capabilities/operations/our-insights/industry-40-reimagining-manufacturing-operations-after-covid-19/pt-BR Acesso em 10 de março de 2024.
Mittal, S., & Frayman, F. (1989, August). Towards a Generic Model of Configuraton Tasks. In IJCAI (Vol. 89, pp. 1395-1401).
Obermayer, N., Csizmadia, T., Hargitai, D. M., & Kigyós, T. (2020, December). Industry 4.0: Are we Robots?. In European Conference on Knowledge Management (pp. 566-XX). Academic Conferences International Limited. https://doi.org/10.34190/EKM.20.112
Pollock, A., & Berge, E. (2018). How to do a systematic review. International Journal of Stroke, 13(2), 138-156. https://doi.org/10.1177/1747493017743796
PwC. (2023). Índice Transformação Digital Brasil 2023: Um retrato da maturidade das organizações na jornada para incorporar tecnologias digitais e criar diferenciais valiosos para seus negócios. Recuperado de https://www.pwc.com.br/pt/estudos/servicos/consultoria-negocios/indice-transformacao-digital-brasil-2023.html Acesso em 17 de março de 2024.
Rane, S. B., Potdar, P. R., & Rane, S. (2021). Development of project risk management framework based on industry 4.0 technologies. Benchmarking: An International Journal, 28(5), 1451-1481. https://doi.org/10.1108/BIJ-03-2019-0123
Samset, K. (2009). Projects, their quality at entry and challenges in the front-end phase. In Making Essential Choices with Scant Information: Front-End Decision Making in Major Projects (pp. 18-35). London: Palgrave Macmillan UK. https://doi.org/10.1057/9780230236837_2
Santiago, S. B., de Oliveira Almeida, E. L., & Dias, J. O. (2019, October). Automatic welding process: a study case of Soldering Machine. In Proceedings of the International Conference on Industrial Engineering and Operations Management Toronto (pp. 23-25).
Schumacher, S., Hall, R., Waldman-Brown, A., & Sanneman, L. (2022). Technology Adoption of Collaborative Robots for Welding in Small and Medium-sized Enterprises: A Case Study Analysis. In Proceedings of the Conference on Production Systems and Logistics: CPSL 2022 (pp. 462-471). Hannover: publish-Ing.. https://doi.org/10.15488/12176
Sharma, A. (2023). Making electric vehicle batteries safer through better inspection using artificial intelligence and cobots. International Journal of Production Research, 62(4), 1277-1296. https://doi.org/10.1080/00207543.2023.2180308
Shi, Z., Xie, Y., Xue, W., Chen, Y., Fu, L., & Xu, X. (2020). Smart factory in Industry 4.0. Systems Research and Behavioral Science, 37, 607-617. https://doi.org/10.1002/sres.2704
Turner, J. R., & Müller, R. (2003). On the nature of the project as a temporary organization. International Journal of Project Management, 21(1), 1-8. https://doi.org/10.1016/S0263-7863(02)00020-0
Vaher, K., Mahmood, K., Otto, T., & Riives, J. (2021, May). Simulation based feasibility analysis of autonomously movable robot arm. In IOP Conference Series: Materials Science and Engineering (Vol. 1140, No. 1, p. 012055). IOP Publishing. https://doi.org/10.1088/1757-899X/1140/1/012055
Verma, S., & Singh, V. (2022). The Employees Intention to Work in Artificial Intelligence-Based Hybrid Environments. IEEE Transactions on Engineering Management. 71, 3266-3277. https://doi.org/10.1109/TEM.2022.3193664
Vido, M., Scur, G., Massote, A. A., & Lima, F. (2020). The impact of the collaborative robot on competitive priorities: case study of an automotive supplier. Gestão & Produção, 27(4), e5358. https://doi.org/10.1590/0104-530X5358-20
Wang, J., Wang, W., Liu, Y., & Wu, H. (2023). Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China. Technology in Society, 72, 102208. https://doi.org/10.1016/j.techsoc.2023.102208
Wang, L., Zhou, Y., & Chiao, B. (2023). Robots and firm innovation: Evidence from Chinese manufacturing. Journal of Business Research, 162, 113878. https://doi.org/10.1016/j.jbusres.2023.113878
Wang, Q., Liu, H., Ore, F., Wang, L., Hauge, J. B., & Meijer, S. (2023). Multi-actor perspectives on human robotic collaboration implementation in the heavy automotive manufacturing industry-A Swedish case study. Technology in Society, 72, 102165. https://doi.org/10.1016/j.techsoc.2022.102165
Westerlund, M. (2020). An ethical framework for smart robots. Technology Innovation Management Review, 10(1), 35-44. https://doi.org/10.22215/timreview/1312
Woitsch, R. (2020). Industrial digital environments in action: the OMiLAB innovation corner. In The Practice of Enterprise Modeling: 13th IFIP Working Conference, PoEM 2020, Riga, Latvia, November 25–27, 2020, Proceedings 13 (pp. 8-22). Springer International Publishing. https://doi.org/10.1007/978-3-030-63479-7_2
Wu, T. (2021). Digital project management: rapid changes define new working environments. Journal of Business Strategy. 43(5), 323-331. https://doi.org/10.1108/JBS-03-2021-0047
Yang, M., YUa, L., Wong, C., Mineo, C., Yang, E., Bomphray, I., ... & Brady, S. (2021). Comprehensive Simulation of Cooperative Robotic System for Advanced Composite Manufacturing: A Case Study. In Advances in Manufacturing Technology XXXIV (pp. 105-110). IOS Press. https://doi.org/10.3233/ATDE210021
Yang, S., Liu, F., Lu, J., & He, X. (2022). Does occupational injury promote industrial robot applications?. Technology in Society, 70, 101998. https://doi.org/10.1016/j.techsoc.2022.101998
Zhang, F., Zhang, Q., & Wu, H. (2023). Robot adoption and export performance: evidence from Chinese industrial firms. Journal of Manufacturing Technology Management. 34(6), 896-916. https://doi.org/10.1108/JMTM-09-2022-0315
Zheng, C., An, Y., Wang, Z., Qin, X., Eynard, B., Bricogne, M., ... & Zhang, Y. (2023). Knowledge-based engineering approach for defining robotic manufacturing system architectures. International Journal of Production Research, 61(5), 1436-1454. https://doi.org/10.1080/00207543.2022.2037025
Zwikael, O., Chih, Y. Y., & Meredith, J. R. (2018). Project benefit management: Setting effective target benefits. International Journal of Project Management, 36(4), 650-658. https://doi.org/10.1016/j.ijproman.2018.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Renan Rubim de Castro Souza, Cristiane Drebes Pedron
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors who publish in this journal agree to the following terms: the author(s) authorize(s) the publication of the text in the journal;
2. The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
3. The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
4. The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
5. Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Atribuição NãoComercial 4.0 internacional, which allows the work to be shared with recognized authorship and initial publication in this journal.
6. Authors are allowed to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g. publish in institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.
7. Authors are allowed and are encouraged to publish and distribute their work online (e.g. in institutional repositories or on a personal web page) at any point before or during the editorial process, as this can generate positive effects, as well as increase the impact and citations of the published work (see the effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
• 8. Authors are able to use ORCID is a system of identification for authors. An ORCID identifier is unique to an individual and acts as a persistent digital identifier to ensure that authors (particularly those with relatively common names) can be distinguished and their work properly attributed.