Técnicas de Big Data e Projeção de Risco de Mercado utilizando Dados em Alta Frequência
DOI:
https://doi.org/10.24023/FutureJournal/2175-5825/2016.v8i3.219Palavras-chave:
Big Data, Dados em Alta Frequência, Volatilidade PercebidaResumo
De acordo com White (2012), o mundo passa por um período denominado de “Era dos Dados”, em que o “universo digital” poderá ter um tamanho de 44 zetabytes em 2020. Um dos fatores para o crescimento do número de dados são as operações em alta frequência em bolsas de valores, estas cresceram significativamente nos últimos anos. Neste contexto, torna-se difícil mensurar a volatilidade durante o dia devido à quantidade de negociações em tempo real. Neste caso, deve-se calcular adequadamente as medidas de volatilidade para que realmente o risco seja percebido pelo operador. O objetivo deste artigo é apresentar uma metodologia para obter a volatilidade futura a partir da extração dos dados e do cálculo da volatilidade por meio de técnicas de Big Data. Para atender o objetivo foram analisadas todas as ações existentes no banco de dados da BOVESPA. Neste artigo, foram selecionadas as 10 ações mais negociadas no período entre os anos de 2012 a 2014 para apresentação dos resultados. Na primeira fase, desenvolveram-se as funções para tratamento dos dados e estimação das medidas de risco utilizando-se da linguagem de programação Python. Na segunda fase utilizou-se o Apache Hadoop e o MapReduce (com o Hadoop Streaming) para o cálculo distribuído da estimação do modelo de volatilidade. Para estimar a Volatilidade Percebida foram utilizadas séries de preços ponderados pelo volume no intervalo de 5 minutos. Como método de projeção foi utilizado o modelo HAR-RV, proposto em Corsi (2003). Como resultados, foram desenvolvidas implementações em Python para estimação da Volatilidade Percebida e implementações em Apache Hadoop e MapReduce (com o Hadoop Streaming) para projeção da Volatilidade. Os resultados das estimativas e projeções ocorreram conforme esperado pela literatura.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
O(s) autor(es) autoriza(m) a publicação do artigo na revista; • O(s) autor(es) garante(m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s); • A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es); • É reservado aos editores o direito de proceder ajustes textuais e de adequação dos artigos às normas da publicação.
Os artigos publicados estão licenciados sob uma licença Creative Commons Atribuição - Não comercial - Sem derivações 4.0 Internacional.