Dinâmica de Sistemas e Previsão: Uma Revisão da Literatura
DOI:
https://doi.org/10.24023/FutureJournal/2175-5825/2017.v9i3.309Keywords:
dinâmica de sistemas, previsão, cenários, revisão da literaturaAbstract
Pouco se discute sobre a aplicação conjunta das ferramentas de dinâmica de sistemas e de prospecção. O presente artigo objetiva revisar a literatura no que tange à aplicação conjunta desses assuntos, através do uso de bibliometria e análise contextual. Foram selecionados 35 artigos da base Scopus, abrangendo o período de 1960 a 2014, de acordo com sua relevância e relação com o tema. Os resultados apontam que os principais journals que apresentam ambos os temas são “Technological Forecasting and Social Change” e o “Journal of the Operational Research Society”. A primeira publicação analisada data de 1976 e as publicações seguintes só vieram a partir de 1988. Daim et al. e Lyneis são os autores cujos artigos tiveram o maior número de citações. As principais metodologias utilizadas foram dinâmica de sistemas e estudo de caso. Em relação à análise contextual, identifica-se que muitos artigos utilizam modelagem e simulação para prospectar o futuro e construir cenários, mas poucos discutem se essa aplicação seria a mais indicada e adequada e como se deve utilizar as duas ferramentas em conjunto.
Downloads
References
Araújo, C. A. (2006). Bibliometria: evolução histórica e questões atuais. Em Questão, 12(1).
Ashayeri, J., & Lemmes, L. (2006). Economic value added of supply chain demand planning: A system dynamics simulation. Robotics and Computer-Integrated Manufacturing, 22(5), 550-556.
Barlas, Y., & Gunduz, B. (2011). Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains. Journal of the Operational Research Society, 62(3), 458-473.
Barre, R. (2014). Innovation systems dynamics and the positioning of Europe. A review and critique of recent Foresight studies. Foresight, 16(2), 126-141.
Bishop, P., Hines, A., & Collins, T. (2007). The current state of scenario development: an overview of techniques. Foresight, 9(1), 5-25.
Blackman, A. W. (1971). Forecasting through dynamic modeling. Technological Forecasting and Social Change, 3, 291-307.
Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., & Finnveden, G. (2006). Scenario types and techniques: towards a user's guide. Futures, 38(7), 723-739.
Bradfield, R., Wright, G., Burt, G., Cairns, G., & Van Der Heijden, K. (2005). The origins and evolution of scenario techniques in long range business planning. Futures, 37(8), 795-812.
Bueno, N. P. (2015). Identificando mudanças de regimes sistêmicos em processos econômicos: um procedimento baseado na abordagem de dinâmica de sistemas. Economia e Sociedade, 22(1), 77-106.
Bui, T., & Loebbecke, C. (1996). Supporting cognitive feedback using system dynamics: a demand model of the global system of mobile telecommunication. Decision Support Systems, 17(2), 83-98.
Buongiorno, J. (1996). Forest sector modeling: a synthesis of econometrics, mathematical programming, and system dynamics methods. International Journal of Forecasting, 12(3), 329-343.
Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6), 1719-1724.
Campuzano, F., Mula, J., & Peidro, D. (2010). Fuzzy estimations and system dynamics for improving supply chains. Fuzzy Sets and Systems, 161(11), 1530-1542.
Cuhls, K. (2003). From forecasting to foresight processes—new participative foresight activities in Germany. Journal of Forecasting, 22(2-3), 93-111.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis.
Technological Forecasting and Social Change, 73(8), 981-1012.
Elsevier. (2014). Scopus. Recovered on October 7 2014 from http://www.elsevier.com/online-tools/scopus/
Featherston, C. R.; Doolan, M. (2013). Using system dynamics to inform scenario planning: a case study. Proceeding of International Conference of the System Dynamics Society, 30, St. Gallen.
Figueiredo, J. C. B. D. (2009). Estudo da difusão da tecnologia móvel celular no Brasil: uma abordagem com o uso de Dinâmica de Sistemas. Produção, 19(1), 230-245.
Footprint (2014). Footprint basics: overview. Recovered on October 5, 2014 from http://www.footprintnetwork.org/en/index.php/GFN/page/footprint_basics_overview/
Forrester, J. W. (1961). Industrial Dynamics. Cambridge: MIT Press.
Geum, Y., Lee, S., & Park, Y. (2014). Combining technology roadmap and system dynamics simulation to support scenario-planning: A case of car-sharing service. Computers & Industrial Engineering, 71, 37-49.
Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological Forecasting and Social Change, 65(1), 3-22.
Gordon, T. J., & Stover, J. (1976). Using perceptions and data about the future to improve the simulation of complex systems. Technological Forecasting and Social Change, 9(1-2), 191-211.
Hood, W., & Wilson, C. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314.
Huss, W. R., & Honton, E. J. (1987). Scenario planning—What style should you use?. Long Range Planning, 20(4), 21-29.
Ishikawa, T., Ohba, H., Yokooka, Y., Nakamura, K., & Ogasawara, K. (2013). Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach. Human Resources for Health, 11(1), 41.
Judd, K. (2003). Nonlinear state estimation, indistinguishable states, and the extended Kalman filter. Physica D: Nonlinear Phenomena, v. 183, n. 3-4, p. 273–281.
Kamath, N. B.; Roy, R. (2007). Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework. European Journal of Operational Research, v. 179, n. 2, p. 334–351.
Karavezyris, V., Timpe, K. P., & Marzi, R. (2002). Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Mathematics and Computers in Simulation, 60(3), 149-158.
Krippendorff, K. (2013). Content analysis: an introduction to its methodology. Thousand Oaks: Sage Publications.
Kumar, S., & Yamaoka, T. (2007). System dynamics study of the Japanese automotive industry closed loop supply chain. Journal of Manufacturing Technology Management, 18(2), 115-138.
Kwakkel, J. H., & Pruyt, E. (2013). Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty. Technological Forecasting and Social Change, 80(3), 419-431.
Lakka, S., Michalakelis, C., Varoutas, D., & Martakos, D. (2013). Competitive dynamics in the operating systems market: Modeling and policy implications. Technological Forecasting and Social Change, 80(1), 88-105.
Li, L., Xu, H., Chen, X., & Simonovic, S. P. (2010). Streamflow forecast and reservoir operation performance assessment under climate change. Water Resources Management, 24(1), 83-104.
Liehr, M., Grossler, A., Klein, M., & Milling, P. M. (2001). Cycles in the sky: understanding and managing business cycles in the airline market. System Dynamics Review, 17(4), 311.
Lyneis, J. M. (2000). System dynamics for market forecasting and structural analysis. System Dynamics Review, 16(1), 3.
Martin, B. R. (2010). The origins of the concept of ‘foresight’in science and technology: An insider's perspective. Technological Forecasting and Social Change, 77(9), 1438-1447.
Martin, B. R., & Johnston, R. (1999). Technology foresight for wiring up the national innovation system: experiences in Britain, Australia, and New Zealand. . Technological Forecasting and Social Change, 60(1), 37-54.
Martino, J. P. (1993). Technological forecasting for decision making. Ohio: McGraw-Hill.
Miller, R. N., Ghil, M., & Gauthiez, F. (1994). Advanced data assimilation in strongly nonlinear dynamical systems. Journal of the Atmospheric Sciences, 51(8), 1037-1056.
Neumann, D., Santa-Eulalia, L. A. D., Yoshino, R. T., & Klasen, J. (2014). A novel demand forecasting model for radical innovation. Production, 24(3), 605-617.
Pidd, M. (1998). Computer simulation in management science. Lancaster: John Wileys & Sons.
Randers, J., & Goluke, U. (2007). Forecasting turning points in shipping freight rates: lessons from 30 years of practical effort. System Dynamics Review, 23(2), 253-284.
Rousseaux, P., Van Cutsem, T., & Liacco, T. D. (1990). Whither dynamic state estimation?. International Journal of Electrical Power & Energy Systems, 12(2), 104-116.
Saritas, O., & Aylen, J. (2010). Using scenarios for roadmapping: The case of clean production. Technological Forecasting and Social Change, 77(7), 1061-1075.
Schoemaker, P. J. (1995). Scenario planning: a tool for strategic thinking. Sloan Management Review, 36(2), 25.
Schnaars, S. P. (1987). How to develop and use scenarios. Long Range Planning, 20(1), 105-114.
Sterman, J. D. (1988). Modeling the formation of expectations: the history of energy demand forecasts. International Journal of Forecasting, 4(2), 243-259.
Sterman, J. D. J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000).
Sterman, J. D. (2007). Exploring the next great frontier: system dynamics at fifty. System Dynamics Review, 23(2‐3), 89-93.
Suryani, E., Chou, S. Y., Hartono, R., & Chen, C. H. (2010). Demand scenario analysis and planned capacity expansion: A system dynamics framework. Simulation Modelling Practice and Theory, 18(6), 732-751.
Suryani, E., Chou, S. Y., & Chen, C. H. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37(3), 2324-2339.
Syntetos, A. A., Boylan, J. E., & Disney, S. M. (2009). Forecasting for inventory planning: a 50-year review. Journal of the Operational Research Society, 60(1), S149-S160.
Vieira, C. L. S. (2012). Proposta de um modelo de implantação de tecnologias de informação e comunicação para prestadores de serviços logísticos. Dissertação, Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina: Florianópolis, SC, Brasil.
Warr, B., & Ayres, R. (2006). REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth. Structural Change and Economic Dynamics, 17(3), 329-378.
Weber, R. P. (1990). Basic content analysis (No. 49). Sage.
Winch, G. (1999). Dynamic visioning for dynamic environments. Journal of the Operational Research Society, 50(4), 354-361.
Wu, D. D., Kefan, X., Hua, L., Shi, Z., & Olson, D. L. (2010). Modeling technological innovation risks of an entrepreneurial team using system dynamics: an agent-based perspective. Technological Forecasting and Social Change, 77(6), 857-869.
Zentner, R. (1982). Scenarios, past, present and future. Long Range Planning, 15(3), 12-20.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors who publish in this journal agree to the following terms: the author(s) authorize(s) the publication of the text in the journal;
2. The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
3. The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
4. The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
5. Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Atribuição NãoComercial 4.0 internacional, which allows the work to be shared with recognized authorship and initial publication in this journal.
6. Authors are allowed to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g. publish in institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.
7. Authors are allowed and are encouraged to publish and distribute their work online (e.g. in institutional repositories or on a personal web page) at any point before or during the editorial process, as this can generate positive effects, as well as increase the impact and citations of the published work (see the effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
• 8. Authors are able to use ORCID is a system of identification for authors. An ORCID identifier is unique to an individual and acts as a persistent digital identifier to ensure that authors (particularly those with relatively common names) can be distinguished and their work properly attributed.