Técnicas de Big Data e Projeção de Risco de Mercado utilizando Dados em Alta Frequência
DOI:
https://doi.org/10.24023/FutureJournal/2175-5825/2016.v8i3.219Keywords:
Big Data, Dados em Alta Frequência, Volatilidade PercebidaAbstract
De acordo com White (2012), o mundo passa por um período denominado de “Era dos Dados”, em que o “universo digital” poderá ter um tamanho de 44 zetabytes em 2020. Um dos fatores para o crescimento do número de dados são as operações em alta frequência em bolsas de valores, estas cresceram significativamente nos últimos anos. Neste contexto, torna-se difícil mensurar a volatilidade durante o dia devido à quantidade de negociações em tempo real. Neste caso, deve-se calcular adequadamente as medidas de volatilidade para que realmente o risco seja percebido pelo operador. O objetivo deste artigo é apresentar uma metodologia para obter a volatilidade futura a partir da extração dos dados e do cálculo da volatilidade por meio de técnicas de Big Data. Para atender o objetivo foram analisadas todas as ações existentes no banco de dados da BOVESPA. Neste artigo, foram selecionadas as 10 ações mais negociadas no período entre os anos de 2012 a 2014 para apresentação dos resultados. Na primeira fase, desenvolveram-se as funções para tratamento dos dados e estimação das medidas de risco utilizando-se da linguagem de programação Python. Na segunda fase utilizou-se o Apache Hadoop e o MapReduce (com o Hadoop Streaming) para o cálculo distribuído da estimação do modelo de volatilidade. Para estimar a Volatilidade Percebida foram utilizadas séries de preços ponderados pelo volume no intervalo de 5 minutos. Como método de projeção foi utilizado o modelo HAR-RV, proposto em Corsi (2003). Como resultados, foram desenvolvidas implementações em Python para estimação da Volatilidade Percebida e implementações em Apache Hadoop e MapReduce (com o Hadoop Streaming) para projeção da Volatilidade. Os resultados das estimativas e projeções ocorreram conforme esperado pela literatura.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors who publish in this journal agree to the following terms: the author(s) authorize(s) the publication of the text in the journal;
2. The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
3. The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
4. The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
5. Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Atribuição NãoComercial 4.0 internacional, which allows the work to be shared with recognized authorship and initial publication in this journal.
6. Authors are allowed to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g. publish in institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.
7. Authors are allowed and are encouraged to publish and distribute their work online (e.g. in institutional repositories or on a personal web page) at any point before or during the editorial process, as this can generate positive effects, as well as increase the impact and citations of the published work (see the effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
• 8. Authors are able to use ORCID is a system of identification for authors. An ORCID identifier is unique to an individual and acts as a persistent digital identifier to ensure that authors (particularly those with relatively common names) can be distinguished and their work properly attributed.